1,160 research outputs found

    DAMA annual modulation effect and asymmetric mirror matter

    Full text link
    The long-standing model-independent annual modulation effect measured by DAMA Collaboration is examined in the context of asymmetric mirror dark matter, assuming that dark atoms interact with target nuclei in the detector via kinetic mixing between mirror and ordinary photons, both being massless. The relevant ranges for the kinetic mixing parameter are obtained taking into account various existing uncertainties in nuclear and particle physics quantities as well as characteristic density and velocity distributions of dark matter in different halo models.Comment: 27 pages, 5 figures, 2 tables; version in publication on Eur. Phys. J.

    A homological interpretation of the transverse quiver Grassmannians

    Full text link
    In recent articles, the investigation of atomic bases in cluster algebras associated to affine quivers led the second-named author to introduce a variety called transverse quiver Grassmannian and the first-named and third-named authors to consider the smooth loci of quiver Grassmannians. In this paper, we prove that, for any affine quiver Q, the transverse quiver Grassmannian of an indecomposable representation M is the set of points N in the quiver Grassmannian of M such that Ext^1(N,M/N)=0. As a corollary we prove that the transverse quiver Grassmannian coincides with the smooth locus of the irreducible components of minimal dimension in the quiver Grassmannian.Comment: final version, 7 pages, corollary 1.2 has been modifie

    Observations of annual modulation in direct detection of relic particles and light neutralinos

    Get PDF
    The long-standing model-independent annual modulation effect measured by the DAMA Collaboration, which fulfills all the requirements of a dark matter annual modulation signature, and the new result by the CoGeNT experiment that shows a similar behavior are comparatively examined under the hypothesis of a dark matter candidate particle interacting with the detectors' nuclei by a coherent elastic process. The ensuing physical regions in the plane of the dark matter-particle mass versus the dark matter-particle nucleon cross-section are derived for various galactic halo models and by taking into account the impact of various experimental uncertainties. It is shown that the DAMA and the CoGeNT regions agree well between each other and are well fitted by a supersymmetric model with light neutralinos which satisfies all available experimental constraints, including the most recent results from CMS and ATLAS at the CERN Large Hadron Collider.Comment: 13 pages, 7 figure

    Soccer-related craniomaxillofacial injuries

    Get PDF
    The authors assessed the rate of craniomaxillofacial fractures in soccer and the areas where they occur, describing above all the injury pattern of this sport. Over a 5-year period (1995-2000) 46 cases of 329 with fractures associated with different sports activities have been surgically operated at the maxillofacial surgery department of the Policlinico "Umberto I" Hospital, University "La Sapienza" of Rome. All data collected have been selected on the basis of sex, age, anatomic site of the fracture, and the practiced sport. Information on injury patterns, severity, and play circumstances have been documented. The department examined 7 sports disciplines, but soccer was responsible for sports-related maxillofacial fractures in 34 of 46 cases (73.9%). All 34 fractures occurred to men. In soccer, the zygomatic and nasal regions are mainly involved. In fact the authors examined zygomatic fractures in 15 cases and nasal fractures in 10 cases. Direct contact between players generally causes soccer-related maxillofacial fractures: head-elbow impacts (21 cases) or head-head impacts (14 cases). The male:female ratio is 6.6:1, while the average age is 25 years for males and 23 years for females. In comparison with other sports (rugby, football, etc.) where physical contact occurs more frequently and the higher incidence of traumatic events justifies the use of protective measures, soccer is not a particularly violent sport. In soccer, maxillofacial traumas are caused by violent impacts between players that take place mainly when the ball is played with the forehead. In this moment there can be an elbow-head impact or a head-head impact. The authors believe that the low incidence of fractures, severity of the lesions, and discomfort caused by possible protective masks make their use unjustified. The data collected during this study witness that in soccer 21 of 34 cases of maxillofacial fractures are caused by elbow-head impacts. This fact suggests a preventive strategy against violent behavior in soccer play. Because the use of any sort of helmet proved impossible, the introduction of more severe penalties and a greater respect for the rules of the game by the players could reduce the percentage of impacts during matches. Impacts cause the most serious and frequent lesions in the maxillofacial region

    IMPACT OF WII-FIT TRAINING ON NEURO-MUSCULAR CONTROL

    Get PDF
    INTRODUCTION: In the past year, the interactive exercise video game Wii Fit (Nintendo, Tokyo, Japan) has achieved worldwide popularity. This system could be a potential asset for both training and physical therapy purposes; however, there is a lack of scientific validation to justify such applications. As a first step in ascertaining the advantages of the Wii Fit system, the present study is focused on the neuromuscular control changes that occur after 8 weeks of daily training. METHOD: Two healthy subjects (25.5±2.1 years, 177.8±14.37 cm, 71.5±16.26 kg) trained for 30 minutes a day for 8 consecutive weeks using standard Wii Fit strength training, aerobic, and yoga exercises. Before and after the training period, a series of tests were performed (gait, hop, isometric, and one leg stability) while collecting EMG data from the quadriceps (rectus femoris, vastus lateralis, vastus medialis), the hamstrings (biceps femoris and semitendinosus), and the grastrocnemii (lateralis and medialis). The EMG data was linear-enveloped and normalized by a maximum isometric voluntary contraction (MVIC). Similarly to Lloyd et al. (2005), the electromyographic activations were then summed by muscle group to calculate the co-contraction ratio (CCR), which is a value between 0 and 1 that indicates equalizing activation as it increases. RESULTS: Only the right leg data is being reported in this paper. Table 1 displays the CCR for the antagonist coactivations of the hamstrings and quadriceps and also the synergistic activations of the knee flexor muscle groups. It is worth noting that during gait and hopping motions, the ratios are decreased after training, while during the stability tests they increased. Finally, no trend emerged for the isometric data. Table 1 Co-contraction Ratio Maximums (Ext 60 and Flex 60 refer to isometric extesion and flexion at 60°)– values in italics are reciprocals Ext 60 Flex 60 Gait Hop Stability Ham/Quad Coactivation Pre 0.21 0.41 0.17 0.20 0.06 Post 0.46 0.47 0.02 0.06 0.88 Ham/Gast Synergy Pre 0.34 0.47 0.02 0.08 0.04 Post 0.47 0.28 0.01 0.08 0.35 DISCUSSION: After training, the CCR data for dynamic activity indicated more focused muscle control. During the stability tests, much higher CCR values were reported, indicating the muscles were doing a better job achieving a intra-articular equilibrium. CONCLUSION: These preliminary results indicate a promising use of the Wii Fit system for training and physical therapy as on a small population they demonstrated neuromuscular control improvement during dynamic and static trials. REFERENCES: Lloyd, D. G., Buchanan, T. S., and Besier, T. F. (2005). Neuromuscular Biomechanical Modeling to Understand Knee Ligament Loading. Medicine & Science in Sports & Exercise, 37, 1939-1947

    Improving ADMMs for solving doubly nonnegative programs through dual factorization

    Get PDF
    Alternating direction methods of multipliers (ADMMs) are popular approaches to handle large scale semidefinite programs that gained attention during the past decade. In this paper, we focus on solving doubly nonnegative programs (DNN), which are semidefinite programs where the elements of the matrix variable are constrained to be nonnegative. Starting from two algorithms already proposed in the literature on conic programming, we introduce two new ADMMs by employing a factorization of the dual variable. It is well known that first order methods are not suitable to compute high precision optimal solutions, however an optimal solution of moderate precision often suffices to get high quality lower bounds on the primal optimal objective function value. We present methods to obtain such bounds by either perturbing the dual objective function value or by constructing a dual feasible solution from a dual approximate optimal solution. Both procedures can be used as a post-processing phase in our ADMMs. Numerical results for DNNs that are relaxations of the stable set problem are presented. They show the impact of using the factorization of the dual variable in order to improve the progress towards the optimal solution within an iteration of the ADMM. This decreases the number of iterations as well as the CPU time to solve the DNN to a given precision. The experiments also demonstrate that within a computationally cheap post-processing, we can compute bounds that are close to the optimal value even if the DNN was solved to moderate precision only. This makes ADMMs applicable also within a branch-and-bound algorithm

    Linear-Time Zero-Knowledge Proofs for Arithmetic Circuit Satisfiability

    Get PDF
    We give computationally efficient zero-knowledge proofs of knowledge for arithmetic circuit satisfiability over a large field. For a circuit with N addition and multiplication gates, the prover only uses O(N)O(N) multiplications and the verifier only uses O(N)O(N) additions in the field. If the commitments we use are statistically binding, our zero-knowledge proofs have unconditional soundness, while if the commitments are statistically hiding we get computational soundness. Our zero-knowledge proofs also have sub-linear communication if the commitment scheme is compact. Our construction proceeds in three steps. First, we give a zero-knowledge proof for arithmetic circuit satisfiability in an ideal linear commitment model where the prover may commit to secret vectors of field elements, and the verifier can receive certified linear combinations of those vectors. Second, we show that the ideal linear commitment proof can be instantiated using error-correcting codes and non-interactive commitments. Finally, by choosing efficient instantiations of the primitives we obtain linear-time zero-knowledge proofs

    Final results of an experiment to search for 2beta processes in zinc and tungsten with the help of radiopure ZnWO4 crystal scintillators

    Get PDF
    A search for the double beta decay of zinc and tungsten isotopes has been performed with the help of radiopure ZnWO4 crystal scintillators (0.1-0.7 kg) at the Gran Sasso National Laboratories of the INFN. The total exposure of the low background measurements is 0.529 kg yr. New improved half-life limits on the double beta decay modes of 64Zn, 70Zn, 180W, and 186W have been established at the level of 10^{18}-10^{21} yr. In particular, limits on double electron capture and electron capture with positron emission in 64Zn have been set: T_{1/2}(2\nu 2K) > 1.1 10^{19} yr, T_{1/2} (0\nu 2\epsilon) > 3.2 10^{20} yr, T_{1/2} (2\nu \epsilon \beta^+) > 9.4 10^{20} yr, and T_{1/2} (0\nu \epsilon \beta^+) > 8.5 10^{20} yr, all at 90% C.L. Resonant neutrinoless double electron capture in 180W has been restricted on the level of T_{1/2} (0\nu 2\epsilon) > 1.3 10^{18} yr. A new half-life limit on alpha transition of 183W to the metastable excited level 1/2^- 375 keV of 179Hf has been established: T_{1/2} > 6.7 10^{20} yr.Comment: This is an author-created, un-copyedited version of an article published in J. Phys. G: Nucl. Part. Phys. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at doi: 10.1088/0954-3899/38/11/11510

    Foundations of Fully Dynamic Group Signatures

    Get PDF
    Group signatures are a central cryptographic primitive that has received a considerable amount of attention from the cryptographic community. They allow members of a group to anonymously sign on behalf of the group. Membership is overseen by a designated group manager. There is also a tracing authority that can revoke anonymity by revealing the identity of the signer if and when needed, to enforce accountability and deter abuse. For the primitive to be applicable in practice, it needs to support fully dynamic groups, i.e. users can join and leave at any time. In this work we take a close look at existing security definitions for fully dynamic group signatures. We identify a number of shortcomings in existing security definitions and fill the gap by providing a formal rigorous security model for the primitive. Our model is general and is not tailored towards a specific design paradigm and can therefore, as we show, be used to argue about the security of different existing constructions following different design paradigms. Our definitions are stringent and when possible incorporate protection against maliciously chosen keys. In the process, we identify a subtle issue inherent to one design paradigm, where new members might try to implicate older ones by means of back-dated signatures. This is not captured by existing models. We propose some inexpensive fixes for some existing constructions to avoid the issue
    • …
    corecore